
田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型
田渊栋等人新作:突破内存瓶颈,让一块4090预训练7B大模型3 月 6 日,田渊栋又一项研究出炉,这次,他们主攻 LLM 内存效率。除了田渊栋本人,还有来自加州理工学院、德克萨斯大学奥斯汀分校以及 CMU 的研究者。
3 月 6 日,田渊栋又一项研究出炉,这次,他们主攻 LLM 内存效率。除了田渊栋本人,还有来自加州理工学院、德克萨斯大学奥斯汀分校以及 CMU 的研究者。
半年多来,Meta 开源的 LLaMA 架构在 LLM 中经受了考验并大获成功(训练稳定、容易做 scaling)。
2023 年,大型语言模型(LLM)以其强大的生成、理解、推理等能力而持续受到高度关注。然而,训练和部署 LLM 非常昂贵,需要大量的计算资源和内存,因此研究人员开发了许多用于加速 LLM 预训练、微调和推理的方法。
2023 年 12 月,首个开源 MoE 大模型 Mixtral 8×7B 发布,在多种基准测试中,其表现近乎超越了 GPT-3.5 和 LLaMA 2 70B,而推理开销仅相当于 12B 左右的稠密模型。为进一步提升模型性能,稠密 LLM 常由于其参数规模急剧扩张而面临严峻的训练成本。
随着大型语言模型(LLM)技术日渐成熟,提示工程(Prompt Engineering)变得越来越重要。一些研究机构发布了 LLM 提示工程指南,包括微软、OpenAI 等等。
IPA 已经成了现代智能手机不可或缺的标配,近期的一篇综述论文更是认为「个人 LLM 智能体会成为 AI 时代个人计算的主要软件范式」。
近日,CMU Catalyst 团队推出了一篇关于高效 LLM 推理的综述,覆盖了 300 余篇相关论文,从 MLSys 的研究视角介绍了算法创新和系统优化两个方面的相关进展。
进入现今的大模型 (LLM) 时代,又有研究者发现了左右互搏的精妙用法!近日,加利福尼亚大学洛杉矶分校的顾全全团队提出了一种新方法 SPIN(Self-Play Fine-Tuning),可不使用额外微调数据,仅靠自我博弈就能大幅提升 LLM 的能力。
近日,美团、浙大等推出了能够在移动端部署的多模态大模型,包含了 LLM 基座训练、SFT、VLM 全流程。也许不久的将来,每个人都能方便、快捷、低成本的拥有属于自己的大模型。
作者重点关注了基于 Transformer 的 LLM 模型体系结构在从预训练到推理的所有阶段中优化长上下文能力的进展。